Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Neurosci Methods ; 406: 110134, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588923

BACKGROUND: The piglet brain has been increasingly used as an excellent surrogate for investigation of pediatric neurodevelopment, nutrition, and traumatic brain injuries. This study intends to establish a piglet brain's structural connectivity model and compare it with the adult pig, enhancing its application for structurally guided functional analysis. METHODS: In this study, diffusion-weighted (DW)-MRI data from piglets (n=11, 3-week-old) was used to establish piglet model and compare with adult pigs. We employed a data-driven independent component analysis (ICA) method to derive piglet-specific tracts. Pearson correlations and Kullback-Leibler (KL) divergences was employed to identify common tracts and unique tracts for piglet. Common tracts were then used in a blueprint connectome study to highlight differences in regions of interest (ROI). RESULTS: The data-driven approach applied to piglet brains revealed 17 common tracts, showing high similarity with adult pigs' white matter (WM) tracts, and identified 3 tracts unique to piglets and 10 negative marker tracts. Additionally, the study highlighted notable differences in 3 ROIs associated with blueprint connectome. COMPARING WITH EXISTING METHODS: This study marks a significant shift from surface-based to voxel-based methodologies in analyzing pig brain structural connectivity and generating connectome blueprints. Additionally, it sheds light on the use of the piglet model for developmental studies, offering new perspectives in this area. CONCLUSION: This study established a piglet brain tract model and conducts a comparative analysis of adult pig's and piglet's structural connectivity. These findings underscore the potential use of the piglet brain model in employing piglet model for developmental studies.


Connectome , White Matter , Animals , White Matter/diagnostic imaging , White Matter/growth & development , White Matter/anatomy & histology , Swine , Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/growth & development , Brain/diagnostic imaging , Brain/anatomy & histology , Animals, Newborn , Neural Pathways/growth & development , Neural Pathways/diagnostic imaging , Neural Pathways/anatomy & histology , Male , Female , Image Processing, Computer-Assisted/methods , Diffusion Tensor Imaging/methods
2.
Nutr Neurosci ; 27(2): 147-158, 2024 Feb.
Article En | MEDLINE | ID: mdl-36657164

BACKGROUND: Functional connectivity (FC) measures statistical dependence between cortical brain regions. Studies of FC facilitate understanding of the brain's function and architecture that underpin normal cognition, behavior, and changes associated with various factors (e.g. nutritional supplements) at a large scale. OBJECTIVE: We aimed to identify modifications in FC patterns and targeted brain anatomies in piglets following perinatal intake of different nutritional diets using a graph theory based approach. METHODS: Forty-four piglets from four groups of pregnant sows, who were treated with nutritional supplements, including control diet, docosahexaenoic acid (DHA), egg yolk (EGG), and DHA + EGG, went through resting-state functional magnetic resonance imaging (rs-fMRI). We introduced the use of differential degree test (DDT) to identify differentially connected edges (DCEs). Simulation studies were first conducted to compare the DDT with permutation test, using three network structures at different noise levels. DDT was then applied to rs-fMRI data acquired from piglets. RESULTS: In simulations, the DDT showed a greater accuracy in detecting DCEs when compared with the permutation test. For empirical data, we found that the strength of internodal connectivity is significantly increased for more than 6% of edges in the EGG group and more than 8% of edges in the DHA and DHA + EGG groups, all compared to the control group. Moreover, differential wiring diagrams between group comparisons provided means to pinpoint brain hubs affected by nutritional supplements. CONCLUSION: DDT showed a greater accuracy of detection of DCEs and demonstrated EGG, DHA, and DHA + EGG supplemented diets lead to an improved internodal connectivity in the developing piglet brain.


Brain , Dietary Supplements , Pregnancy , Animals , Swine , Female , Diet/veterinary , Docosahexaenoic Acids , Cognition , Magnetic Resonance Imaging/methods
3.
Brain Connect ; 13(9): 563-573, 2023 11.
Article En | MEDLINE | ID: mdl-37597202

Introduction: Hypertension affects over a billion people worldwide, and the application of neuroimaging may elucidate changes brought about by the disease. We have applied a graph theory approach to examine the organizational differences in resting-state functional magnetic resonance imaging (rs-fMRI) data between hypertensive and normotensive participants. To detect these groupwise differences, we performed statistical testing using a modified difference degree test (DDT). Methods: Structural and rs-fMRI data were collected from a cohort of 52 total (29 hypertensive and 23 normotensive) participants. Functional connectivity maps were obtained by partial correlation analysis of participant rs-fMRI data. We modified the DDT null generation algorithm and validated the change through different simulation schemes and then applied this modified DDT to our experimental data. Results: Through a comparative analysis, the modified DDT showed higher true positivity rates (TPR) when compared with the base DDT while also maintaining false positivity rates below the nominal value of 5% in nearly all analytically thresholded trials. Applying the modified DDT to our rs-fMRI data showed differential organization in the hypertension group in the regions throughout the brain including the default mode network. These experimental findings agree with previous studies. Conclusions: While our findings agree with previous studies, the experimental results presented require more investigation to prove their link to hypertension. Meanwhile, our modification to the DDT results in higher accuracy and an increased ability to discern groupwise differences in rs-fMRI data. We expect this to be useful in studying groupwise organizational differences in future studies.


Brain , Hypertension , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Rest , Hypertension/diagnostic imaging
4.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37514994

We compared the clinical characteristics and outcome of vaccinated hospitalized COVID-19 patients with unvaccinated hospitalized COVID-19 patients. A retrospective cohort study was conducted at the Sindh Infectious Diseases Hospital and Research Center, Karachi, Pakistan. A total of 1407 hospitalized COVID-19 positive patients were included from April 2021 to March 2022, of which 812 (57.71%) were males. Of the 1407, 378 (26.87%) patients were vaccinated while 1029 (73.13%) were unvaccinated. Of the vaccinated patients, 160 (42.32%) were partially vaccinated while 218 (57.68%) were fully vaccinated (vaccine breakthrough infection). Fewer unvaccinated COVID-19 patients survived compared to vaccinated patients (62.5% vs. 70%, RR 0.89, 95% CI: 0.82-0.96, p-value = 0.004). Despite there being more vaccinated patients above 60 years of age (60.05% vs. 47.13%), their risk of mortality was lower by 43% (OR = 0.578; CI = 0.4201 to 0.7980, p = 0.0009). On survival analysis, vaccinated patients had better 30-day survival compared to unvaccinated patients (p = 0.028). Moreover, comparing waves 3-5, unvaccinated patients of wave 4, which was driven by the delta variant, had the worst survival (51.8%, p ≤ 0.001) while vaccinated patients of wave 3 (driven by the alpha variant) had the best survival (71.6%).

...